KING ABDULAZIZ UNIVERSITY FACULTY OF SCIENCE DEPARTMENT OF MATHEMATICS ENTRANCE TEST FOR PH.D. MATHEMATICS 19th Jumada Awal, 1434 / 31st March 2013 Maximum Time: Three Hours

Name:_____

I.D. #: _____

INSTRUCTIONS:

1. Solve all Seven questions given in the exam.

- 2. All questions are equally weighted.
- 3. Write complete steps in a proof.
- 4. To disprove a statement, provide a counter example.

		Grading	
	Assigned		Obtained
Q.1	(10)		
Q.2	_(10)		
Q.3	_(10)		
Q.4	_(10)		
Q.5	_(10)		
Q.6	_(10)		
Q.7	_(10)		
Total:	(70)		

Q.1.
(a) Prove that any convergent sequence x_n of real numbers with

$$\lim x_n = x$$

is Cauchy.

Q.1.(b) Let X be a metric space with distance d. Define a continuous function $f: X \to \mathbb{R}$.

Q.2. (a) Let X be a Banach space and \mathbb{R} the usual normed space. Show that

$$||(x, \alpha)|| = ||x|| + |\alpha|$$

is a complete norm on $X \times \mathbb{R}$.

Q.2. (b) Let $X = \mathbb{R}^3$. Show that the mapping $T: X \to \mathbb{R}$ defined by

$$T(x) = x_1 + x_2 + x_3,$$

where $x = (x_1, x_2, x_3) \in \mathbb{R}^3$, is a continuous linear operator for which

 $||T|| = \sqrt{3}.$

Q.3.

Prove or disprove the following statements.

(a) Any two groups of order p, where p is a prime number, are isomorphic.

(b) $(\mathbb{Z}_4, +)$ and $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$ are isomorphic abelian groups.

Q.3. (c) The group of quaternions $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ is a cyclic group.

Q.4.

Let R be a commutative ring with identity.

An ideal I of R is called a prime ideal if for any pair of elements $a, b \in I$,

$$ab \in I \Longrightarrow a \in I \text{ or } b \in I.$$

(a) Prove that: Every maximal ideal of R is a prime ideal.

Q.4.

(b) Let P be an ideal of R. Then prove that:
P is prime if and only if R/P is an integral domain.

Q.5.

Define $\mathcal{T} \subset \mathcal{P}(\mathbb{R})$ as follows:

A subset U of \mathbb{R} is in \mathcal{T} if and only if either $U = \Phi$; or $\mathbb{R} \setminus U$ is countable.

(a). Prove that τ is a topology on \mathbb{R} . This topology is called the *countable* complement topology.

- (b). Let Q denote the set of rational numbers and I denote the irrationals. Calculate in (R, τ) each of the following:
 (1) int(I).
 - (2) $\overline{\mathbb{Q}}$.

Q.5. (c). Prove or disprove: $(\mathbb{R}, \mathcal{T})$ is T_2 .

(d). Prove or disprove: $(\mathbb{R}, \mathcal{T})$ is second countable.

Q. 6.

Let us consider the Cauchy Problem (CP)

$$x' = f(t, x), \qquad x(t_0) = x_0,$$

where

$$f:\overline{D} \to \mathbb{R}, D = \{(t,x) | |t-t_0| \le a, |x-x_0| \le b\}.$$

Peano says that a solution always exists in

$$|t-t_0| \leq \alpha$$
, where $\alpha = min\{a, \frac{b}{M}\}$, and $M = max_{(t,x)\in\overline{D}}|f(t,x)|$,

if f(t, x) is continuous.

(a) Give an example to show that this condition is sufficient but not necessary.

(b) Show, by giving an example, that (CP) may still have a solution and this solution may be unique, however, f does not satisfy Lipschtiz condition. Justify your answer.

Q. 7. Solve the following system of nonlinear equations using Newton's method & Jacobian matrix.

$$3x_1 - \cos(x_1 x_2) - \frac{1}{2} = 0,$$

$$4x_1^2 - 625x_2^2 + 2x_2 - 1 = 0,$$

$$e^{-x_1 x_2} + 20x_3 + \frac{10\pi - 3}{3} = 0.$$