$\mathbb{K} I N G \mathbb{A B} \mathbb{D} U \mathbb{L} \mathbb{Z} \mathbb{Z} \mathbb{Z}$ UNIVERSITY
 $\mathbb{F A C U L T Y} \mathbb{O F}$ SCIENCE
 DEPARTMENT OF MATHEMATICS

Entrance Test For Ph.D. Mathematics
19th Jumada Awal, 1434 / 31st March 2013
Maximum Time: Three Hours

Name: \qquad
I.D. \#: \qquad

INSTRUCTIONS:

1. Solve all Seven questions given in the exam.
2. All questions are equally weighted.
3. Write complete steps in a proof.
4. To disprove a statement, provide a counter example.

Assigned	Obtained
Q. $1_{\text {_ }}$ (10)	
Q. $2 \ldots-\ldots$ (10)	
Q. 3 - - (10)	
Q. $4 \ldots-$ (10)	
Q. $5 \ldots-$ (10)	
Q. $6 \ldots-$ (10)	
Total:_-_ (70)	

Q.1.
(a) Prove that any convergent sequence x_{n} of real numbers with

$$
\lim x_{n}=x
$$

is Cauchy.
Q.1.
(b) Let X be a metric space with distance d.

Define a continuous function $f: X \rightarrow \mathbb{R}$.
Q.2.
(a) Let X be a Banach space and \mathbb{R} the usual normed space. Show that

$$
\|(x, \alpha)\|=\|x\|+|\alpha|
$$

is a complete norm on $X \times \mathbb{R}$.
Q.2.
(b) Let $X=\mathbb{R}^{3}$. Show that the mapping $T: X \rightarrow \mathbb{R}$ defined by

$$
T(x)=x_{1}+x_{2}+x_{3},
$$

where $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$, is a continuous linear operator for which

$$
\|T\|=\sqrt{3} .
$$

Q.3.

Prove or disprove the following statements.
(a) Any two groups of order p, where p is a prime number, are isomorphic.
(b) $\left(\mathbb{Z}_{4},+\right)$ and $\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2},+\right)$ are isomorphic abelian groups.
Q.3.
(c) The group of quaternions $Q_{8}=\{ \pm 1, \pm i, \pm j, \pm k\}$ is a cyclic group.
Q.4.

Let R be a commutative ring with identity.
An ideal I of R is called a prime ideal if for any pair of elements $a, b \in I$,

$$
a b \in I \Longrightarrow a \in I \text { or } b \in I .
$$

(a) Prove that: Every maximal ideal of R is a prime ideal.
Q.4.
(b) Let P be an ideal of R. Then prove that:
P is prime if and only if R / P is an integral domain.

Q.5.

Define $\tau \subset \mathcal{P}(\mathbb{R})$ as follows:
A subset U of \mathbb{R} is in τ if and only if either $U=\Phi$; or $\mathbb{R} \backslash U$ is countable.
(a). Prove that τ is a topology on \mathbb{R}. This topology is called the countable complement topology.
(b). Let \mathbb{Q} denote the set of rational numbers and \mathbb{I} denote the irrationals. Calculate in (\mathbb{R}, τ) each of the following:
(1) $\operatorname{int}(\mathbb{I})$.
(2) $\overline{\mathbb{Q}}$.
Q.5.
(c). Prove or disprove: (\mathbb{R}, τ) is T_{2}.
(d). Prove or disprove: (\mathbb{R}, τ) is second countable.
Q. 6.

Let us consider the Cauchy Problem (CP)

$$
x^{\prime}=f(t, x), \quad x\left(t_{0}\right)=x_{0},
$$

where

$$
f: \bar{D} \rightarrow \mathbb{R}, D=\left\{(t, x)| | t-t_{0}\left|\leq a,\left|x-x_{0}\right| \leq b\right\} .\right.
$$

Peano says that a solution always exists in

$$
\left|t-t_{0}\right| \leq \alpha, \text { where } \alpha=\min \left\{a, \frac{b}{M}\right\}, \text { and } M=\max _{(t, x) \in \bar{D}}|f(t, x)|,
$$

if $f(t, x)$ is continuous.
(a) Give an example to show that this condition is sufficient but not necessary.
(b) Show, by giving an example, that (CP) may still have a solution and this solution may be unique, however, f does not satisfy Lipschtiz condition. Justify your answer.

Q. 7.

Solve the following system of nonlinear equations using Newton's method \& Jacobian matrix.

$$
\begin{gathered}
3 x_{1}-\cos \left(x_{1} x_{2}\right)-\frac{1}{2}=0, \\
4 x_{1}^{2}-625 x_{2}^{2}+2 x_{2}-1=0, \\
e^{-x_{1} x_{2}}+20 x_{3}+\frac{10 \pi-3}{3}=0 .
\end{gathered}
$$

